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BAYESIAN ESTIMATION OF STUDENT-T GARCH MODEL 

USING LINDLEY’S APPROXIMATION 
 

 
 

Abstract. The dependency of conditional second moments of financial time 

series is modelled by Generalized Autoregressive conditionally heteroscedastic 
(GARCH) processes. The maximum likelihood estimation (MLE) procedure is most 

commonly used for estimating the unknown parameters of a GARCH model. In this 

study, the parameters of the GARCH models with student-t innovations are 

discussed for estimations using the Bayesian approach. It is assumed that the 
parameters of the GARCH model are random variables having known prior 

probability density functions. Lindley’s approximation will be used to estimate the 

Bayesian estimators since they are not in a closed form. The Bayesian estimators 
are derived under squared error loss function. Finally, a simulation study is 

performed in order to compare the ML estimates to the Bayesian ones and in 

addition to simulations an example is given in order to illustrate the findings. 
MLE’s and Bayesian estimates are compared according to the expected risks in the 

simulation study which shows that as the sample size increases the expected risks 

decrease and also it is observed that Bayesian estimates have performed better 

than MLE’s. 
Keyword:GARCH, MLE, Lindley’s Approximation, Bayesian Methods, 

Squared Error. 

 

JEL Classification:C11, C15, C22, C51 
 

1. Introduction 
The Generalized Autoregressive Conditionally Heteroscedastic (GARCH) 

model that is introduced by Bollerslev (1986) assumes that the conditional variance 

depends on its own p past values and q past values of the squared error terms. This 

model is represented as GARCH(p,q). Especially, the GARCH (1,1) model is very 
successful to capture the volatility of financial data in most applications which 
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have been utilized widely by practitioners and academicians. Therefore, it has been 
studied extensively in the literature, see for example Tsay (2013). The most 

common method to make inferences for the GARCH model is Maximum 

Likelihood Estimation (MLE) since it is easy to implement and is available in 
statistical software packages. Furthermore, the MLE's are asymptotically optimum 

that have been shown by Lee and Hansen (1994) and Bollereslev et al. (1994). 

 The Bayesian approach is another well-known approach to make 

inferences about the GARCH models. The parameters of the model that have 
known prior probability function are assumed to be random variables in the 

Bayesian approach. Then, the prior information about the distribution of the 

parameters along with the data is used to determine the posterior distribution which 
is a base for statistical inferences regarding the parameter.In Bayesian studies, the 

posterior distribution for the parameters of GARCH model is found to be 

analytically intractable. Hence, numerical or a proper approximation method is 
required to get inferences for the parameters.Markov Chain Monte Carlo (MCMC) 

techniques are the primary method that makes enable to draw samples from the 

posterior and predictive distributions using Markov chains and thus it satisfies that 

sample averages can be used to approximate expectations.There are various ways 
of generating the required Markov chain; particularly, Metropolis-Hastings (MH) 

algorithm, introduced by Metropolis et al. (1953), can be used to converge target 

distribution using an acceptance/rejection rule.And also, all other MCMC methods 
can be considered as special cases of MH algorithm. In the time series studies, 

MCMC procedures are applied to determine the joint posterior distribution of the 

GARCH (1,1) model by Müller and Pole (1998), Nakatsuma (2000) and Ardia 
(2010). In addition to these studies, the Griddy Gibbs sampler approach is 

proposed to estimate the GARCH models by Bauwens et al. (1998). Kim et al. 

(1998) utilized the adaptive rejection Metropolis sampling (ARMS) technique that 

is proposed by Gilks et al (1995) is used for estimating the parameters of GARCH-
t models.ARMS is applied by developing an envelope function of the log of the 

target density, which is then utilized in rejection sampling.  

 Mitsui and Watanabe (2003) developed another Bayesian estimation 
method that is a Taylored approach based on the acceptance-rejection Metropolis-

Hastings algorithm. This method can be applied for any kind of parametric ARCH-

type models. Marín et al. (2015) use the data cloning methodology to estimate the 

parameters of the GARCH and Continuous GARCH model. In the data cloning 
methodology, a Bayesian approach is used to obtain approximate maximum 

likelihood estimators of GARCH and continuous GARCH models avoiding 

numerically maximization of the pseudo-likelihood function. One can find the 
review of the existing literature on the most relevant Bayesian inference methods 

for  GARCH models in the papers Asai (2006) and Virbickaite et al. (2015) that 

contain the comparison of the Bayesian approach versus classical procedures. 
The aim of the study is to derive Bayesian estimators for the Student-t 

GARCH model using Lindley's approximation. The symmetric SEL function is 
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considered in this study since it is the most commonly used loss function for 

constructing a Bayes estimator of the parameter and, due to mathematical 

tractability that was pointed out by Moore and Papadopoulos (2000). The paper is 
organised as follows; general form of the GARCH Model, GARCH Models with 

Standardized Student-t distribution, Squared Error Loss Function and Expected 

Risk, Lindley’s Approximation and Bayesian Estimation of the GARCH model are 
mentioned in the section under the methodology topic. Simulation study and 

illustration for the method are given in the separate sections. The last part of the 

study includes conclusions and discussions. 
 

2. METHODOLOGY 

2.1 GARCH Model 

The variance equation of the GARCH (p,q) model can be expressed as 

𝑎𝑡 = 𝜎𝑡𝜀𝑡 

𝜀𝑡~𝑓𝑣(0,1) 

 σ𝑡 
2 = 𝛼0 + ∑ 𝛼𝑖𝑎𝑡−𝑖

2

𝑝

𝑖=1

+ ∑ 𝛽𝑖σ𝑡−𝑖
2

𝑞

𝑖=1

 
(

(1) 

 

where  𝑓𝑣(0,1) is the probability density function of the innovations or residuals 

with zero mean and unit variance. In non-normal case, 𝑣 are used as additional 
distributional parameters for the scale and the shape of the distribution  

Bolerslev (1986) has shown that the GARCH(p,q) process is covariance 

stationary with E(𝑎𝑡) = 0, var(𝑎𝑡) = 𝛼0 / (1 − (∑ 𝛼𝑖
𝑝
𝑖=1 + ∑ 𝛽𝑖

𝑞
𝑖=1 )) and cov(𝑎𝑡, 𝑎𝑠) 

= 0 for t ≠ s if and only if ∑ 𝛼𝑖
𝑝
𝑖=1 + ∑ 𝛽𝑖

𝑞
𝑖=1 < 1. He used the MLE method by 

maximizing the given log-likelihood function  

𝐿(𝜗) = 𝑙𝑛 ∏ 𝑓𝑣(𝑎𝑡 , 𝐸(𝑎𝑡|𝐼𝑡−1), 𝜎𝑡)

𝑡

 

where 𝑓𝑣 is the conditional distribution function. The second argument of 𝑓𝑣denotes 

the mean, and the third argument the standard deviation. The full set of parameters 

𝜗 includes the parameters from the variance equation 𝜗 =
(𝛼0, 𝛼1, … , 𝛼𝑝,  𝛽1, … , 𝛽𝑞)and the distributional parameters (𝑣) in the case of a non-

normal distribution function.  

 

2.2 GARCH Models with Standardized Student-t Distribution 

In some applications it should be assumed that the errors are follow a 
heavy tailed distribution such as a standardized Student t-distribution. Bollerslev 

(1987) proposed the GARCH model with standardized Student t-distribution for 

the innovations which is called GARCH-t model. For example, in the financial 
markets asset returns often exhibit heavy tails, and as is pointed by Ardia (2010) a 
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distribution with heavy tails makes extreme outcomes such as crashes more likely 
than does a normal distribution.  

The likelihood function of the GARCH-t model is 

 

𝑓 (𝑎𝑝+1, 𝑎𝑝+2, … , 𝑎𝑇|𝛼0, 𝛼1, … , 𝛼𝑝, 𝛽1, … , 𝛽𝑞) 

= ∏
𝛤 (

𝜈+1

2
)

𝛤 (
𝜈

2
) √(𝜈 − 2)𝜋

𝑇

𝑡=𝑝+𝑞+1

1

σt
(1 +

at
2

(ν − 2)
)−

ν+1

2  

(

(2) 

 

and the Log-likelihood function is 

 

 

𝐿 = ∑ [  𝑙𝑛 (𝛤 (
𝜈 + 1

2
)) − 𝑙𝑛 (𝛤 (

𝜈

2
))

𝑛

𝑡=𝑝+𝑞+1

−
1

2
𝑙𝑛((𝜈 − 2)𝜋) −

1

2
𝑙𝑛𝜎𝑡

2

−
𝜈 + 1

2
𝑙𝑛 (1 +

𝑎𝑡
2

(𝜈 − 2)𝜎𝑡
2)] 

(
(3) 

 

2.3 Squared Error Loss Function and Expected Risk 
Loss function defines the “penalty” that one pays when θ is estimated by 

𝜃. Bayesian estimates are based on minimization of the expected loss function. The 
expected loss is integrated over all possible settings of θ weighted by their relative 

probabilities and indicates how much loss can be expected when 𝜃 is chosen as the 

estimate. The optimal decision procedure has to choose a 𝜃 that minimizes this 

expected loss. 

 𝜃∗ = 𝐸[𝐿(𝜃, 𝜃)] = 𝑚𝑖𝑛𝜃 ∫ 𝐿(𝜃, 𝜃) ℎ(𝜃| 𝑥)𝑑𝜃 
(

(4) 

The Squared Error Loss Function 𝐿(𝜃, 𝜃) = (𝜃 − 𝜃)
2
 is a symmetrical 

loss function. The Squared Error Loss Functiongives equal losses to over 
estimation and underestimation. The Bayes estimator under squared error loss 

function is 𝜃 = 𝐸[𝜃| 𝑥] 
The Bayesian and ML estimators of some distributions were compared by 

using expected risks (ERs) of Monte Carlo simulations (Nadar et.al, 2015). The 

expected risk (ER) of  𝜃 under the SEL function is  

𝐸𝑅(𝜃) =
1

𝑁
∑(�̂�𝑛 − 𝜃𝑛)

2
𝑁

𝑛=1

 

2.4 Lindley’s Approximation 

Lindley (1980)  developed approximate procedures for the evaluation of 
the ratio of two integrals which are in the form of 

 
∫ 𝑣(𝜃) exp{𝐿(𝜃)} 𝑑𝜃

∫ 𝑔(𝜃) exp{𝐿(𝜃)} 𝑑𝜃
 

(

(5) 
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where 𝜃 = (𝜃1 , 𝜃2, … , 𝜃𝑛), 𝐿(𝜃) is the logarithm of the likelihood function, and 

𝑔(𝜃) and 𝑣(𝜃) = 𝑢(𝜃)𝑔(𝜃) are arbitrary functions of 𝜃. The posterior expectation 

of the function 𝑢(𝜃), for given 𝑥, is 

 𝐸[𝑢(𝜃)|𝑥] =
∫ 𝑢(𝜃) exp{𝐿(𝜃) + 𝜌(𝜃)} 𝑑𝜃

∫ exp{𝐿(𝜃) + 𝜌(𝜃)} 𝑑𝜃
 

(
(6) 

where 𝑒𝑥𝑝{𝐿(𝜃) + 𝜌(𝜃)}is the the posterior distribution of  𝜃 except for the 

normalizing constant and 𝜌(𝜃) = 𝑙𝑛𝑔(𝜃). Expanding 𝑒𝑥𝑝{𝐿(𝜃) + 𝜌(𝜃)}in 

equation (6) into a Taylor series expansion about the ML estimates of 𝜃 gives 

𝐸[𝑢(𝜃)|𝑥]. So, 𝐸[𝑢(𝜃)|𝑥] can be estimated asymptotically by 

 �̂�𝐵 = 𝑢 +
1

2
∑ ∑(𝑢𝑖𝑗 + 2𝑢𝑖

𝑗𝑖

𝜌𝑗)𝜑𝑖𝑗 +
1

2
∑ ∑ ∑ ∑ 𝐿𝑖𝑗𝑘

𝑙𝑘𝑗𝑖

𝜑𝑖𝑗𝜑𝑘𝑙𝑢𝑙 
(

(7) 

where 𝑖, 𝑗, 𝑘, 𝑙 = 1,2, … , 𝑛, and 

𝑢 = 𝑢(𝜃),   𝑢𝑖 =
𝜕𝑢

𝜕𝜃𝑖
,   𝑢𝑖𝑗 =

𝜕2𝑢

𝜕𝜃𝑖𝜕𝜃𝑗
,    𝐿𝑖𝑗𝑘 =

𝜕3𝐿

𝜕𝜃𝑖𝜕𝜃𝑗𝜕𝜃𝑘
, 𝜌𝑗 =

𝜕𝜌

𝜕𝜃𝑗
, 𝐿𝑖𝑗

=
𝜕2𝐿

𝜕𝜃𝑖𝜕𝜃𝑗
 

and 𝜑𝑖𝑗 is the (𝑖, 𝑗)𝑡ℎ element of the inverse matrix {−𝐿𝑖𝑗} and all are evaluated at 

the MLE of the parameters. 

 

2.5 Bayesian Estimation of the Parameters of GARCH(p,q)Model 

Let {𝑎𝑡} where 𝑡 = 1,2, … , n, denote the GARCH(p,q) process defined by 

equation (1) where the parameters 𝛼0 > 0,  𝛼𝑖 ≥ 0 for 𝑖 = 1,2, … , 𝑝 and 𝛽𝑖 ≥ 0 for 

𝑖 = 1,2, … , 𝑞.  In this study it will be assumed that the process is stationary and 

thus the coefficients 𝛼1, … , 𝛼𝑝, 𝛽1, … , 𝛽𝑞  satisfy the condition ∑ 𝛼𝑖
𝑝
𝑖=1 + ∑ 𝛽𝑖

𝑞
𝑖=1 <

1.  

Let 𝜗 = (𝛼0, 𝛼1, … , 𝛼𝑝,  𝛽1, … , 𝛽𝑞) denote the parameters of the 

GARCH(p,q) model and 𝑥 = (𝑎𝑝+1, 𝑎2, … , 𝑎𝑇) the observed series. If 𝑎𝑡 is 

distributed with mean zero and conditional variance σ𝑡 
2 , then the density function 

is  

 𝑓(𝑎𝑡|𝜗, 𝑎0, 𝑎1, … , 𝑎𝑡−1) = ∏ 𝑓𝑣(𝑎𝑡 , 𝐸(𝑎𝑡|𝐼𝑡−1), 𝜎𝑡)

𝑇

𝑡=𝑝+1

 (8) 

The estimates obtained by maximizing eq (8) are known as the conditional 

maximum likelihood estimates. Usually, it is easier to maximize the log of the 

likelihood function, i.e. 

 𝐿 = 𝑙𝑛 ∏ 𝑓𝑣(𝑎𝑡 , 𝐸(𝑎𝑡|𝐼𝑡−1), 𝜎𝑡)

𝑇

𝑡=𝑝+1

           (9) 
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Bollerslev (1986) derived the MLE estimates of 𝛼 and 𝛽 , denoted by �̂� 

and  �̂� by maximizing eq(9) 

It will be assumed that the parameters of the GARCH(p,q) model behave 
as random variables and thus they will be estimated using Bayes theorem. It will be 

assumed that 𝛼0 has gamma prior ; 𝑔1(𝛼0, 𝑟, 𝜃) with parameters (𝑟, 𝜃), 

 

 
𝑔1(𝛼0; 𝑟, 𝜃) =

1

𝛤(𝑟)𝛽𝑟 𝛼0
𝑟−1𝑒−

𝛼0
𝜃     for  𝛼0 > 0 and  

𝑟, 𝜃 > 0 
(10) 

 

Furthermore, we will assume that the joint density function of 𝜏 =
(𝛼1, … , 𝛼𝑝, 𝛽1, … , 𝛽𝑞) with 𝑝 ≥ 2 is the Dirichlet probability function with 

parameters 𝜔1 , 𝜔2, … , 𝜔𝑝+1>0 given as 

 𝑔2(𝜏; 𝜔1 , 𝜔2, … , 𝜔𝑝+𝑞+1) =
1

𝐵(𝜔)
∏ 𝜏𝑖

𝜔𝑖−1

𝑝+𝑞+1

𝑖=1

            (11) 

where 𝜏1 + ⋯ + 𝜏𝑝+𝑞+1 < 1 and 𝜏𝑝+𝑞+1 = 1 − 𝜏1 − ⋯ − 𝜏𝑝+𝑞. The normalizing 

constant 𝐵(𝜔)is the multinomial beta function given as 

𝐵(𝜔) =
∏ 𝛤(𝜔𝑖

𝑝+𝑞+1
𝑖=1 )

𝛤(∑ 𝜔𝑖
𝑝+𝑞+1
𝑖=1 )

 

where 𝜔 = (𝜔1 , 𝜔2, … , 𝜔𝑝+𝑞+1). Since 𝛼0 and 𝛼1, … , 𝛼𝑝,  𝛽1, … , 𝛽𝑞 are 

independent, their joint pdf is given by 
 

 

𝑔(𝛼0, 𝛼1, … , 𝛼𝑝,  𝛽1, … , 𝛽𝑞) 

=
1

𝛤(𝑟)𝛽𝑟

1

𝐵(𝜔)
𝛼0

𝑟−1𝑒
−

𝛼0
𝛽 ∏ 𝜏𝑖

𝜔𝑖−1

𝑝+𝑞+1

𝑖=1

 
          (12) 

 

The posterior function for GARCH model in general form is given as 

ℎ1(𝜗|𝑥)  = 

{𝑙𝑛 ∏ 𝑓𝑣(𝑎𝑡, 𝐸(𝑎𝑡|𝐼𝑡−1), 𝜎𝑡)𝑇
𝑡=𝑝+𝑞+1 }

𝛼0
𝑟−1𝑒

−
𝛼0
𝜃

𝜃𝑟𝛤(𝑟)

1

𝐵(𝜔)
∏ 𝜏𝑖

𝜔𝑖−1𝑝+𝑞+1
𝑖=1

∬ … ∫{𝑙𝑛 ∏ 𝑓𝑣(𝑎𝑡, 𝐸(𝑎𝑡|𝐼𝑡−1), 𝜎𝑡)𝑇
𝑡=𝑝+𝑞+1 }

𝛼0
𝑟−1𝑒

−
𝛼0
𝜃

𝜃𝑟𝛤(𝑟)

1

𝐵(𝜔)
∏ 𝜏

𝑖

𝜔𝑖−1𝑝+𝑞+1
𝑖=1

𝑑𝛼0𝑑𝜏1 … 𝑑𝜏𝑝+𝑞+1

 
(13) 

 

which can not be expressed in a closed form.  
The estimation of GARCH parameters under SE loss function is 
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𝜗𝑆𝐸𝐿
∗ = 𝐸[(𝜗|𝑥)] = ∬ … ∫ 𝑢(𝜗)ℎ1(𝜗|𝑥)𝑑𝜗

=
∬ … ∫ 𝑢(𝜗){𝑙𝑛 ∏ 𝑓𝑣(𝑎𝑡 , 𝐸(𝑎𝑡|𝐼𝑡−1), 𝜎𝑡)𝑇

𝑡=𝑝+𝑞+1 }
𝛼0

𝑟−1𝑒
−

𝛼0
𝜃

𝜃𝑟𝛤(𝑟)

1

𝐵(𝜔)
∏ 𝜏𝑖

𝜔𝑖−1𝑝+𝑞+1
𝑖=1 𝑑𝛼0𝑑𝜏1 … 𝑑𝜏𝑝+𝑞+1

∬ … ∫{𝑙𝑛 ∏ 𝑓𝑣(𝑎𝑡, 𝐸(𝑎𝑡|𝐼𝑡−1), 𝜎𝑡)𝑇
𝑡=𝑝+𝑞+1 }

𝛼0
𝑟−1𝑒

−
𝛼0
𝜃

𝜃𝑟𝛤(𝑟)

1

𝐵(𝜔)
∏ 𝜏

𝑖

𝜔𝑖−1𝑝+𝑞+1
𝑖=1 𝑑𝛼0𝑑𝜏1 … 𝑑𝜏𝑝+𝑞+1

 
(14) 

 
Lindley’s approximation will be applied to find the parameters of GARCH 

model with Student-t distributed innovations in the following sections since above 

Bayesian estimate under SE loss function has no closed form. 

 

2.6 Bayesian Estimation of the Parameters of GARCH (1,1) Model with  

Student-t Innovations 

Then under the assumption of Student-t innovations, the conditional 
likelihood function of an GARCH(1,1) model is 

𝑓(𝑎𝑝+𝑞+1, 𝑎𝑝+𝑞+2, … , 𝑎𝑇|𝜗) = ∏
𝛤 (

𝜈+1

2
)

𝛤 (
𝜈

2
) √(𝜈 − 2)𝜋

𝑇

𝑡=2

1

σt
(1 +

at
2

(ν − 2)σt
2)−

ν+1

2  

 

Log-likelihood function is 

𝐿 = ∑ [  ln (𝛤 (
𝜈 + 1

2
)) − ln (𝛤 (

𝜈

2
))

𝑛

𝑡=2

−
1

2
ln((𝜈 − 2)𝜋) −

1

2
𝑙𝑛σ𝑡

2

+
ν + 1

2
ln (1 +

𝑎𝑡
2

(𝜈 − 2)𝜎𝑡
2)] 

After omitting the constant terms and plugging the σ𝑡
2 = 𝛼0 + 𝛼1𝑎𝑡−1

2 +
𝛽1σ𝑡−1

2 , the log-likelihood function is  

𝐿 = ln(𝑥|𝜗) = − ∑ [
1

2
ln(𝛼0 + 𝛼1𝑎𝑡−1

2 + 𝛽1σ𝑡−1
2 )

𝑛

𝑡=2

+ (
ν + 1

2
) ln (1 +

𝑎𝑡
2

(𝜈 − 2)(𝛼0 + 𝛼1𝑎𝑡−1
2 + 𝛽1σ𝑡−1

2 )
)] 

Let 𝑚1 =
ν+1

2
 , 𝑚𝑡 =

𝑎𝑡
2

(𝜈−2)
 and 𝑐𝑡 = 𝛼0 + 𝛼1𝑎𝑡−1

2 + 𝛽1σ𝑡−1
2  . So, log-

likelihood function becomes as 

𝐿 = − ∑( ( 
1

2

𝑛

𝑡=2

− 𝑚1)𝑙𝑛𝑐𝑡 + 𝑚1ln (𝑐𝑡 + 𝑚𝑡) ) 

 It will be assumed that 𝛼0 has gamma prior and the joint density function 

of 𝛼1 and  𝛽1 is the Dirichlet probability function that are given in the equations 

(10) and (11) respectively. Since 𝛼0,𝛼1 and  𝛽1are independent, their joint pdf is 

given by in eq(12) 

The joint posterior function of 𝛼0, 𝛼1 and 𝛽1 
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ℎ2(𝜗|𝑥)  

=
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𝛤(

𝜈+1

2
)

𝛤(
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2
)√(𝜈−2)𝜋

𝑇
𝑡=2

1

σt
(1 +

at
2

(ν−2)
)−

ν+1

2 }
𝛼0

𝑟−1𝑒
−

𝛼0
𝛽

𝛽𝑟𝛤(𝑟)

1

𝐵(𝜔)
∏ 𝜏𝑖

𝜔𝑖−13
𝑖=1

∭{∏
𝛤(

𝜈+1

2
)

𝛤(
𝜈

2
)√(𝜈−2)𝜋

𝑇
𝑡=2

1

σt
(1 +

at
2

(ν−2)
)−

ν+1

2 }
𝛼0

𝑟−1𝑒
−

𝛼0
𝛽

𝛽𝑟𝛤(𝑟)

1

𝐵(𝜔)
∏ 𝜏𝑖

𝜔𝑖−13
𝑖=1 𝑑𝛼0𝑑𝜏1𝑑𝜏2

 

 

The estimation of Student-t GARCH(1,1) parameters under SEL function is: 
 

𝜗𝑆𝐸𝐿
∗ = 𝐸[(𝜗|𝑥)] = ∭ 𝑢(𝜗)ℎ2(𝜗|𝑥)𝑑𝜗

=

∭ 𝑢(𝜗)𝑙𝑛{∏
𝛤(

𝜈+1

2
)

𝛤(
𝜈

2
)√(𝜈−2)𝜋

𝑇
𝑡=2

1

σt
(1 +

at
2

(ν−2)
)−

ν+1

2 }
𝛼0

𝑟−1𝑒
−

𝛼0
𝛽

𝛽𝑟𝛤(𝑟)

1

𝐵(𝜔)
∏ 𝜏𝑖

𝜔𝑖−13
𝑖=1 𝑑𝛼0𝑑𝜏1𝑑𝜏2

∭ 𝑙𝑛{∏
𝛤(

𝜈+1

2
)

𝛤(
𝜈

2
)√(𝜈−2)𝜋

𝑇
𝑡=2

1

σt
(1 +

at
2

(ν−2)
)−

ν+1

2 }
𝛼0

𝑟−1𝑒
−

𝛼0
𝛽

𝛽𝑟𝛤(𝑟)

1

𝐵(𝜔)
∏ 𝜏𝑖

𝜔𝑖−13
𝑖=1 𝑑𝛼0𝑑𝜏1𝑑𝜏2

 

 

𝛼0, 𝛼1 and 𝛽1 can be estimated by using Lindley’s equation which are given in 

Appendix A under SE loss function. 
 

3. SIMULATIONS 

The Expected Risk of Monte Carlo simulations is used to compare the 
Bayesian  estimators with MLEs. The simulation study is done using a Student-t 

distributed innovations and for different sample sizes which are 200, 400, 600, 800 

and 1000.   

 A gamma or an improper (vague) prior and Dirichlet prior are assumed as 

priors for 𝛼0  and the set of parameters (𝛼1,𝛽1) respectively.  

The ML and Bayes estimates of the parameters under an SE loss function 
are obtained using the above-mentioned innovations, sample sizes, and priors.   

Table 1 presents the mean true values of each parameter that are randomly 

generated using the prior distributions. The average values of the ML and Bayesian 
estimates are given in Table 2 through Table 4 with the expected risks. 

All the results are based on 1000 repetitions. The degrees of freedom 

parameter of the Student-t distribution is assumed as a fixed parameter that is equal 

to 4. 

The prior of 𝛼0 is either a gamma distribution with the parameters 𝑟 = 3 

and 𝛽 = 1 or a vague prior. Dirichlet distribution is assumed as prior for 𝛼1 and 

𝛽1with parameters 𝜔1 = 1,𝜔2 = 2 and 𝜔3 = 3. Dirichlet prior is chosen for 𝛼1 

and 𝛽1 since it satisfies the stationarity condition for the model. All simulations are 

done in R 3.2.3 (R metrics) 
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It is observed that as the sample size increases the expected risks decrease 

which should be expected since the MLEs are consistent. It is also observed for the 

Bayes estimates when the sample sizes increase the expected risks decrease. 
The expected risks, when proper priors are used for the Bayes estimates, 

are smaller than the MLEs and this situation is also valid when a vague prior is 

used for 𝛼0. The MLEs and the Bayes' estimates when a vague prior is utilized 
have a little difference according to the expected risks. 

 

Table 1. Student-t GARCH (1,1) Model Simulation: Average Values of 

Generated Parameters  

Priors Average Values 

𝜶𝟎 Gamma(3,1) 2.400738 2.738164 2.789534 3.008514 2.925643 

𝜶𝟏  Dirichlet(𝟏, 𝟐, 𝟑) 0.3251807 0.3129626 0.3195718 0.3367621 0.3329756 

𝜷𝟏 Dirichlet(𝟏, 𝟐, 𝟑) 
0.3541763 0.3470459 0.336607 0.3348294 0.3277689 

 

Table 2. Student-t GARCH (1,1) Model Simulation: Results of 𝜶𝟎 

Sample Size MLEs for 𝜶𝟎 
ER of MLEs 
for 𝜶𝟎 

Bayes for 
𝜶𝟎 with 
vague prior 

ER of Bayes 
for 𝜶𝟎 with 
vague prior 

Bayes for 
𝜶𝟎 with 
Gamma 
prior 

ER of Bayes 
for 𝜶𝟎 with 
Gamma 
prior 

200 2.912492 0.5864247 2.869875 0.5482291 2.87149 0.4948494 

400 2.996625 0.2808601 2.975769 0.2622993 2.97615 0.2413418 

600 3.082227 0.2231313 3.069906 0.2144665 3.069987 0.203641 

800 3.023868 0.130692 3.015687 0.1290079 3.015817 0.1288259 

1000 2.927911 0.0956071 2.921488 0.0949001 2.921669 0.0947229 

 

Table 3. Student-t GARCH (1,1) Model Simulation: Results of 𝜶𝟏 

Sample Size MLEs for 𝜶𝟏 
ER of MLEs 
for 𝜶𝟏 

Bayes for 
𝜶𝟏 with 
Dirichlet 
prior and 𝜶𝟎 
with vague 
prior 

ER of Bayes 
for 𝜶𝟏 with 
Dirichlet 
prior and 𝜶𝟎 
with vague 
prior 

Bayes for 
𝜶𝟏 with 
Dirichlet 
prior 

ER of Bayes 
for 𝜶𝟏 with 
Dirichlet 
prior 

200 0.2412551 0.0186213 0.2498856 0.0163551 0.2493107 0.0143522 

400 0.2695071 0.0096773 0.2710411 0.0091329 0.2709386 0.0086339 

600 0.2753703 0.0081199 0.2783593 0.0077794 0.2781737 0.0076873 

800 0.3360034 0.0038143 0.3368273 0.0037795 0.3367491 0.0037791 

1000 0.331809 0.0028863 0.3322847 0.0028718 0.3322128 0.002835 
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Table 4. Student-t GARCH (1,1) Model Simulation: Results of 𝜷𝟏 

Sample Size MLEs for 𝜷𝟏 
ER of MLEs 
for 𝜷𝟏 

Bayes for 
𝜷𝟏 with 
Dirichlet 
prior and 𝜶𝟎 
with vague 
prior 

ER of Bayes 
for 𝜷𝟏 with 
Dirichlet 
prior and  
𝜶𝟎 with 
vague prior 

Bayes for 
𝜷𝟏 with 
Dirichlet 
prior 

ER of Bayes 
for 𝜷𝟏with 
Dirichlet 
prior 

200 0.2499502 0.0190152 0.2633075 0.0179713 0.2627652 0.0158404 

400 0.2960466 0.0078536 0.3007127 0.0075232 0.3005076 0.0073171 

600 0.2822612 0.0060151 0.2852617 0.0054279 0.2851629 0.0054135 

800 0.3343117 0.0039281 0.3358129 0.0038931 0.3357285 0.003893 

1000 0.3249313 0.0033352 0.3266395 0.0031782 0.3265664 0.0031269 

 

4. ILLUSTRATION 

The daily observations of the Deutschmark vs British Pound (DEM/GBP) 
foreign exchange log-returns are used to apply Bayesian estimation methods. The 

period of data is from January 3, 1985, to December 31, 1991. This dataset has 

been promoted as an informal benchmark for GARCH time series software 
validation. The first 750 observations are used to illustrate the estimation method 

(Ardia, 2010). The plot of the dataset is shown in Figure 1. 

 

 
 

Figure 1. DEM/GBP FOREX log-returns 

 

Table 5. Parameter estimates for the Student-t GARCH (1,1) 

Coefficients MLEs Bayes SE 

𝜶𝟎 0.0359309 0.0436224 

𝜶𝟏 0.2668964 0.2675840 

𝜷𝟏 0.6942793 0.6654374 

 

For the parameter 𝛼0 a vague prior is assumed. Dirichlet prior is assumed 

for 𝛼1 and 𝛽1where the hyperparameters of Dirichlet distribution are assumed 

equal and unknown and are estimated using the method of moments. So, 𝜔1 =
𝜔2 = 𝜔3 =0.01094683.The log-returns is used to estimate the parameters which 

are given in Table 5 and then using the student-t GARCH(1,1) model the next 10 
values will be predicted.  
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Table 6. Out-of-Sample Forecast Error Statistics 

Method ER RMSE MAE 

MLE 0.1505108 0.38796 0.31099 

BAYES 0.1444862 0.38011 0.30821 

 

The predicted values that are compared to the real ones by computing the 

expected risks (ER), root mean square error (RMSE) and mean absolute error 
(MAE) are shown in Table 6.The Bayesian estimators' forecasting errors seem to 

be better than the MLE estimators, even with very small differences only for this 

period of data.  

5. CONCLUSION 

In this study, the parameters of GARCH model are assumed as random 

variables and are estimated using Bayes theory. The square error loss function is 

considered. The Bayes estimators are not in a closed form and thus Lindley’s 
approximation is utilized. The error terms or financial asset returns are assumed to 

follow the Student-t distribution in estimating the parameters of GARCH model. 

Moreover, The gamma and vague priors are assumed for the constant coefficient of 
the GARCH model and the Dirichlet prior is assumed for the GARCH coefficients. 

The simulation studies are performed in order to compare the Bayesian estimates 

with the ML estimates. As expected, the Bayes estimates have lower expected risks 

than the MLE’s.  
Instead of using Lindley’s approximation one could have used Tierney’s 

and Kadane’s approximation. Lindley’s method requires the third order partial 

differentiation of log-likelihood function and one maximization whereas the 
Tierney and Kadane approximation requires the second order partial differentiation 

of the likelihood function and two maximizations. Singh et al. (2014) reported that 

Bayesian estimation of the parameters of the Marshall-Olkin extended exponential 
distribution using Lindley’s approximation was better than using Tierney’s and 

Kadane’s approximation under informative setup. It is of interest to compare these 

two approximations for GARCH models. 

 

Appendix A 

The log likelihood for the Student-t GARCH (1,1) model reduces to 

𝐿 = − ∑ ( ( 
1

2

𝑛

𝑡=𝑝+1

− 𝑚1)𝑙𝑛𝑐𝑡 + 𝑚1ln (𝑐𝑡 + 𝑚𝑡) ) 

where  𝑚1 =
ν+1

2
 , 𝑚𝑡 =

𝑎𝑡
2

(𝜈−2)
 and 𝑐𝑡 = 𝛼0 + 𝛼1𝑎𝑡−1

2 + 𝛽1𝜎𝑡−1
2 . 

For the three parameter case when u is a function of only of one of the 

three parameters 𝜗 = (𝛼0, 𝛼1, 𝛽1) Lindley’s approximation simplifies, when a SEL 

function is assumed, as 
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𝛼𝑗−1_𝑆𝐸𝐿
∗∗ = �̂�𝑗−1 + 𝑢𝑖𝜌𝑖𝜑𝑖𝑖 +

1

2
{𝐴𝑢𝑖𝜑1𝑖 + 𝐵𝑢𝑖𝜑2𝑖 + 𝐶𝑢𝑖𝜑3𝑖}        𝑖 = 1, 2,3  𝑗

= 1,2 

𝛽1_𝑆𝐸𝐿
∗∗ = �̂�1 + 𝑢𝑖𝜌𝑖𝜑𝑖𝑖 +

1

2
{𝐴𝑢𝑖𝜑1𝑖 + 𝐵𝑢𝑖𝜑2𝑖 + 𝐶𝑢𝑖𝜑3𝑖}       𝑖 = 1, 2,3        

 

where 𝑢𝑖 = 1 for 𝑖 = 1, 2, 3𝜌1 =
𝑟−1

𝛼0
−

1

𝜃
 ,  𝜌2 =

𝜔1−1

𝛼1
−

𝜔3−1

1−𝛼1−𝛽1
 and 

𝜌3 =
𝜔2 − 1

𝛽1
−

𝜔3 − 1

1 − 𝛼1 − 𝛽1
 

 

𝐴 = 𝜑11𝐿111 + 2𝜑12𝐿121 + 2𝜑13𝐿131 + 2𝜑23𝐿231 + 𝜑22𝐿221 + 𝜑33𝐿331 

𝐵 = 𝜑11𝐿112 + 2𝜑12𝐿122 + 2𝜑13𝐿132 + 2𝜑23𝐿232 + 𝜑22𝐿222 + 𝜑33𝐿332 

𝐶 = 𝜑11𝐿113 + 2𝜑12𝐿123 + 2𝜑13𝐿133 + 2𝜑23𝐿233 + 𝜑22𝐿223 + 𝜑33𝐿333 
 

The derived 𝐿𝑖𝑗 𝑖, 𝑗 = 1,2,3 and 𝐿𝑖𝑗𝑘 𝑖, 𝑗 = 1,2,3 and the estimated 

variances and covariances of the MLE are  

𝐿11 = − ∑ (
1

2

𝑛

𝑡=𝑝+1

− 𝑚1) (
1

𝑐𝑡
2 +

𝑚1

(𝑐𝑡 + 𝑚𝑡)2
) 𝐿111

= − ∑ (
1

2

𝑛

𝑡=𝑝+1

− 𝑚1) (
2

𝑐𝑡
3

+
2𝑚1

(𝑐𝑡 + 𝑚𝑡)3
) 

𝐿22 = − ∑ (
1

2

𝑛

𝑡=𝑝+1

− 𝑚1) (
𝑎𝑡−1

4

𝑐𝑡
2 +

𝑚1𝑎𝑡−1
4

(𝑐𝑡 + 𝑚𝑡)2
) 𝐿222

= − ∑ (
1

2

𝑛

𝑡=𝑝+1

− 𝑚1) (
2𝑎𝑡−1

6

𝑐𝑡
3

+
2𝑚1𝑎𝑡−1

6

(𝑐𝑡 + 𝑚𝑡)3
) 

𝐿33 = − ∑ (
1

2

𝑛

𝑡=𝑝+1

− 𝑚1) (
σ𝑡−1

4

𝑐𝑡
2 +

𝑚1σ𝑡−1
4

(𝑐𝑡 + 𝑚𝑡)2
) 𝐿333

= − ∑ (
1

2

𝑛

𝑡=𝑝+1

− 𝑚1) (
2σ𝑡−1

6

𝑐𝑡
3

+
2𝑚1σ𝑡−1

6

(𝑐𝑡 + 𝑚𝑡)3
) 

𝐿12 = 𝐿21 = − ∑ (
1

2

𝑛

𝑡=𝑝+1

− 𝑚1) (
𝑎𝑡−1

2

𝑐𝑡
2 +

𝑐1𝑎𝑡−1
2

(𝑐𝑡 + 𝑚𝑡)2
) 

𝐿13 = 𝐿31 = − ∑ (
1

2

𝑛

𝑡=𝑝+1

− 𝑚1) (
σ𝑡−1

2

𝑐𝑡
2 +

𝑚1σ𝑡−1
2

(𝑐𝑡 + 𝑚𝑡)2
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𝐿23 = 𝐿32 = − ∑ (
1

2

𝑛

𝑡=𝑝+1

− 𝑚1) (
𝑎𝑡−1

2 σ𝑡−1
2

𝑐𝑡
2 +

𝑚1𝑎𝑡−1
2 σ𝑡−1

2

(𝑐𝑡 + 𝑚𝑡)2
) 

𝐿122 = 𝐿221 = 𝐿212 = − ∑ (
1

2

𝑛

𝑡=𝑝+1

− 𝑚1) (
2𝑎𝑡−1

4

𝑐𝑡
3 +

2𝑚1𝑎𝑡−1
4

(𝑐𝑡 + 𝑚𝑡)3
) 

𝐿112 = 𝐿121 = 𝐿211 = − ∑ (
1

2

𝑛

𝑡=𝑝+1

− 𝑚1) (
2𝑎𝑡−1

2

𝑐𝑡
3 +

2𝑚1𝑎𝑡−1
2

(𝑐𝑡 + 𝑚𝑡)3
) 

𝐿113 = 𝐿131 = 𝐿311 = − ∑ (
1

2

𝑛

𝑡=𝑝+1

− 𝑚1) (
2σ𝑡−1

2

𝑐𝑡
3 +
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2

(𝑐𝑡 + 𝑚𝑡)3
) 

𝐿322 = 𝐿223 = 𝐿232 = − ∑ (
1

2

𝑛

𝑡=𝑝+1

− 𝑚1) (
2𝑎𝑡−1
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2
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3 +
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2

(𝑐𝑡 + 𝑚𝑡)3
) 

𝐿331 = 𝐿133 = 𝐿313 = − ∑ (
1

2

𝑛

𝑡=𝑝+1

− 𝑚1) (
2σ𝑡−1

4

𝑐𝑡
3 +

2𝑚1σ𝑡−1
4

(𝑐𝑡 + 𝑚𝑡)3
) 

𝐿332 = 𝐿233 = 𝐿323 = − ∑ (
1

2

𝑛

𝑡=𝑝+1

− 𝑚1) (
2𝑎𝑡−1

2 σ𝑡−1
4

𝑐𝑡
3 +

2𝑚1𝑎𝑡−1
2 σ𝑡−1

4

(𝑐𝑡 + 𝑚𝑡)3
) 

𝐿123 = 𝐿321 = 𝐿231 = 𝐿213 = 𝐿312 = 𝐿132

= − ∑ (
1

2

𝑛

𝑡=𝑝+1

− 𝑚1) (
2𝑎𝑡−1
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3 +
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(𝑐𝑡 + 𝑚𝑡)3
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